Datasheet (preliminary) ## SMD foil pH electrode pH01 The SMD foil pH electrode is designed for electrochemical, potentiometric determination of pH in liquid or moist samples when combined with a second, reference electrode. The readings are taken by measuring the open circuit potential/voltage between both electrodes via high resistivity voltage measurement electronics (see example circuit below). Potential (E) and pH have a linear relationship in the operating range of pH 5 to pH 9. The pH value of an unknown analyte solution can be calculated using the pre-determined slope and an offset E_0 value, which could be determined by measuring the potential in a calibration buffer of known pH value. Once used, the sensor must be kept hydrated for further application and not allowed to dry out. | Technical Data | | | | | | |--|--------------------|--|--|--|--| | Dimensions | L x W in mm | | | | | | Whole sensor foil | 7.6 x 5.6 | | | | | | Connection pad | 1.5 x 1.61 | | | | | | | | | | | | | Potential response (at 20°C) | 53.5 ± 4.0 mV / pH | | | | | | Set-up time
(time till stable output) | < 1 min | | | | | | Response time (t ₉₀) | < 30 sec | | | | | | Lifetime (in use) | ~ 3 days | | | | | | | | | | | | | Measuring environment | | | | | | | Operating pH range | 5 – 9 pH | | | | | | Samples | Diverse* | | | | | *must be sufficient moisture for contact to be maintained between both electrodes All mechanical dimensions are valid at 25 °C ambient temperature, if not differently indicated. All data except the mechanical dimensions only have information purposes and are not to be understood as assured characteristics. Technical changes without previous announcement as well as mistakes reserved. Load with extreme values during a longer period can affect the reliability. Typing errors and mistakes reserved. Product specifications are subject to change without notice. Schematic example for a measuring circuit including an operational amplifier as voltage follower Version 0.1 Date: 04.05.2023 Page 1 / 2 ## Datasheet (preliminary) SMD foil pH electrode pH01 Example output readings for different pH buffer solutions Potential dependency for different pH buffer solutions and linearity approximation in the range of pH 5 to 9 | TRL 0 | TRL 1 | TRL 2 | TRL 3 | TRL 4 | TRL 5 | TRL 6 | TRL 7 | TRL 8 | TRL 9 | C , | |----------------------------------|---|---|---|--|--|---|---|---|--|--| | ldea unproven
concept | Problem Solving
Core principles
are explored and | Concept
Generation | | Proof of concept
Prototype | Rough Working-
Prototype | Prototype Field
Trials | Pre-Production
Prototype | First Production
Runs | Full Commercial-
Production | | | no testing has
een performed. | observed but no
experimental
proof available. | Concept & application have been explored. | | Testing done on
care mechanismus
and function | Tested in intended environment | Tested in intended
environment close
to expected
performance | Operating in operational environment at precommercial | Manufacturing issues solved. | Technology
available for
consumers. | | | | | | | | | | scale. | | | | | | | | | | | | | | | | | | Concepts identified Research carried out and refined | | | Early indications
of materials
identified Manufacturing
feasibility | Characteristics identified Early supply chain assessment | Initial trade
studies Quality
thresholds
established | Assessed supply chain BOM in development | Establish multiple sources Pilot line builds validated | Continous process
improvments Materials in
control | Monitor and
manage all key
characteristics
Six Sigma leve | | | Technology development Identify material concerns | | | determined • Manufacturing processes identified | | established | Materials being tested Demonstrate supply chain BOM Draft | Materials proven
Quality
characteristics
validated BOM finalised | Quality validated
with LRIP articles Make/buy
supports | | | | | ΕV | /EL | EX | | CR | TE | RI <i>F</i> | | | | | Prior C
As a consultancy, hav | onsultancy Know | | Small Scale
Prototype | Refine
Manufacturing | Prototype
Development | Design for
Manufacturing | Pilot Line
Demonstration | Manufacturing
Production | Manufacturir | | | many Industries, the are tackled and kep | first 3 manufactu | ıring readiness levels
early sage product- | Crude prototypes
to test
technology | Strategy Identification of enabling | Manufacturing pocesses have been defined but | Manufacturing
detailing is
underway. | Manufacturing processes are | Getting the quality,
costs and
performance on | Managment
, Applied
Six Sigma to th | | | | | | technology | technologies and components. | requires design
for manufacturing | unuerway. | proved | target. | production | | | | | | | | | | | | | | 0,0 | MRL 1 | MRL 2 | MRL 3 | MRL 4 | MRL 5 | MRL 6 | MRL 7 | MRL 8 | MRL 9 | MRL 1 | Version 0.1 Page 2 / 2 Date: 04.05.2023